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Dichotomously switched phase flows
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~Received 5 May 1997!

The general formalism for periodic dichotomous noise on nonpotential flows is considered. This uncorre-
lated noise process switches suddenly at integer values of periodt. The effect of additive noise of this kind on
the planar FitzHugh-Nagumo ordinary differential equations@R. FitzHugh, Biophys. J.1, 445 ~1961!; J.
Nagumo, S. Arimoto, and Y. Yoshikawa, Proc. IRE50, 2061 ~1962!# is examined. For larget, quasifractal
attractors are observed, whereas for the white-noise limit, wheret is small, a Fokker-Planck equation describes
the evolution. The magnitude oft determines the smoothness of the transient evolution and equilibrium density
of the system. Typically the stochastic equations give rise to two regions of high density near the stable fixed
points of the underlying autonomous system. The stiffness parameter« in the differential equations determines
the fast variable, its associated nullcline, and the resulting flow structure. For small« the cubic nullcline
controls the motion and transitions between the high-density peaks occur along segments of a noisy limit cycle.
For large« the linear nullcline governs the transitions and the peaks are joined by a single band. The statistical
behavior of the oscillatory and direct transitions is examined.@S1063-651X~97!01209-9#

PACS number~s!: 05.40.1j, 05.45.1b, 02.50.2r, 46.10.1z
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I. INTRODUCTION

Nonlinear systems driven by colored noise have inter
ing structural and dynamical properties. The stationary d
tribution, if it exists, may have extrema different from tho
of the underlying deterministic system and the transit
rates between regions of high probability depend in su
ways on the correlations in the noise process that is res
sible for the transitions. There exists an extensive literature
the calculation of transition rates in overdamped, o
dimensional systems governed by a quartic potential sub
to various types of colored noise@1#.

If the dissipative deterministic dynamics is two
dimensional and cannot be derived from a potential, lim
cycle oscillations as well as fixed-point attractors may ex
When such two-dimensional systems are driven by colo
noise the resulting phase-space flow may be complicated
structured@2#. In addition, the new time scale associated w
the oscillatory dynamics may be comparable to that of
noise correlation time and influence the transition rate p
cess@3#.

In this article we consider such effects for a specific b
often studied two-dimensional system: the FitzHug
Nagumo model@4#. While this model was originally intro-
duced in the context of nerve impulse propagation, it h
seen widespread use since it exhibits excitability, bistabil
and oscillations and the structure of the ordinary differen
equations describing its dynamics has features in comm
with many systems. The two variables in this model are of
referred to as the activator and inhibitor and their relat
velocities are determined by a control parameter«.

We restrict our considerations to a specific simp
colored-noise process: periodic dichotomous noise@5,6#.
This noise process causes the system to switch between
alternative forms of the evolution equations with probab
ties p and q512p at regular time intervalst @7#. In the
studies presented here the two evolution equations ar
FitzHugh-Nagumo type and differ in their additive or mul
561063-651X/97/56~3!/2582~10!/$10.00
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plicative control parameters; thus it may serve as a mode
chemical systems with activator-inhibitor kinetics where t
flow terms are stochastic variables. By selecting parame
in the stochastic process one may then study transitions
tween fixed points, a fixed point and limit cycle, or two lim
cycles.

The outline of the paper is as follows. Section II describ
the stochastic dynamics in general, formal terms without
gard to a specific deterministic dynamics. Both stocha
differential equations and Fokker-Planck equations are p
sented for the periodic dichotomous noise process. In Sec
the results are specialized to the FitzHugh-Nagumo mo
and the focus is placed on additive noise in both the slo
and fast-inhibitor limits. Passage to the white-noise limit
considered and the fast-inhibitor limit is treated in some
tail where passage to this limit presents some subtle featu
Section IV is devoted to the discussion of the noisy attract
as a function of the noise periodt and the FitzHugh-Nagumo
variable «. The change in attractor structure as the whi
noise limit is approached is also discussed. Transition
processes between stable states are described in Sec. V
consider cases where the transition process gives ris
monotonic and oscillatory decay to the stationary distribut
and examine the features responsible for this behavior.
conclusions of the study are given in Sec. VI.

II. EVOLUTION UNDER PERIODIC DICHOTOMOUS
NOISE

Before turning to the stochastically driven FitzHug
Nagumo~FHN! equation, which forms the central part of ou
study, it is useful to present a general formulation of t
model that does not rely on the specific details of the FH
dynamics. Letx5(x1 ,x2 , . . . ,xn) be a vector of dynamica
variables andf6 two ~possibly nonlinear! functions ofx. We
suppose that the time evolution ofx(t) is given by the sto-
chastic model
2582 © 1997 The American Physical Society
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56 2583DICHOTOMOUSLY SWITCHED PHASE FLOWS
ẋ~ t !5
1

2
@11n~ t !#f1„x~ t !…1

1

2
@12n~ t !#f2„x~ t !…. ~1!

Heren(t) is the continuous-time periodic dichotomous no
process

n~ t !5(
s50

`

nsu~ t2st!u„~s11!t2t…, t>0, ~2!

driven by the discrete~Bernoulli trial! noise processns , for
sPZ1, defined by

ns5H 11, probability p

21, probability q,
~3!

whereq512p. In Eq. ~2!, u is the Heaviside function.
The stochastic differential equation~1! can be integrated

over the time intervalt to give the two-branched stochast
map

x6~ t1t!5E
t

t1t

f6„x~ t8!…dt81x~ t !5eL6
† tx~ t ![F6

t
„x~ t !…,

~4!

whereL6
† (x)5f6(x)•¹. In Eq. ~4!, at instantst5st, the

positive branch is chosen with probabilityp and the negative
branch is chosen with probabilityq. In this stroboscopic pic-
ture a stochastic trajectory is a sequence of points funct
ally dependent on an underlying sequence of Bernoulli tri

The stochastic differential equation~1! is associated with
a two-component Fokker-Planck equation for densit
r6(x,t) controlled by velocity fieldsf6 :

S @] t1L1~x!#r1~x,t !

@] t1L2~x!#r2~x,t !
D 5 (

s50

[ t/t]

d~ t2st!S 2q p

q 2p
D

3S r1~x,t !

r2~x,t !
D , ~5!

whereL6(x)5¹•f6(x) and @ t/t# is the largest integer les
than t/t. Each component in this equation can be integra
over the noise periodt and added to give a discrete evolutio
equation for the total densityr(x,t)5r1(x,t)1r2(x,t) @8#:

r~x,t1t!5~pe2L1t1qe2L2t!r~x,t !. ~6!

This equation induces a diffeomorphism ofRn into Rn when
written as an integral equation with singular kernel over
spatial coordinates~Perron-Frobenius equation!:

r~x,t1t!5E dy$pd~x2eL1
† ty!1qd~x2eL2

† ty!%r~y,t !

5E dy$pd„x2F1
t ~y!…1qd„x2F2

t ~y!…%r~y,t !.

~7!

HereF6
t (x)5exp(L6

† t)x are just the two map branches~4!
appearing in the integrated~stroboscopic! form of the sto-
chastic differential equation~1!.
n-
s.

s

d

e

A question that arises in the case of the singular integ
equation~7! is whether the asymptotic state possesses
invariant densityr* (x)[ limt→`r(x,t). The symmetric Ber-
noulli convolution on the unit interval that can be written
the form of Eq.~7! is an important example wherer* does
not exist when the mass of the system is eventually conc
trated on a~dense or nowhere dense! set of measure zero
@9,10#. However, we avoid the problem of the existence
r* by coarse graining. A coarse-grained density defined
the mean probability of the measure in a lattice partition
~phase! space always exists.

III. FITZHUGH-NAGUMO EQUATION:
STOCHASTIC DYNAMICS

As an example of a two-dimensional flow consider t
FitzHugh-Nagumo equation@4#

du

dt
5u2u32v,

dv
dt

5«~u2av2b!, ~8!

or

ẋ~ t !5f„x~ t !;a,b…, ~9!

where we have setx5(u,v)T and f is defined by the right-
hand sides of Eq.~8!. This equation possesses cubic a
linear nullclines that may intersect to produce a variety
different attractors. We may convert this into a stochas
differential equation with two kinds of periodic dichotomou
noise:a fluctuation leads to multiplicative noise andb fluc-
tuation leads to additive noise; we focus here on the addit
noise case. We now examine the structure of the autonom
vector fields corresponding to the components of the rand
variables and their averages.

Supposea is fixed and the random variableb(t) takes the
two values6D with probabilitiesp and q, respectively, at
integer multiples oft. The stochastic differential equatio
now takes the form of Eq.~1! with

f6„x~ t !…5S u2u32v

«~u2av7D!
D . ~10!

Consider the situation shown in Fig. 1. The heavy so
lines are the two nullclines forb50 that intersect in three
fixed points, two of which are stable~large filled circles! and
the other~open circle! unstable. Ifb(t) takes the values6D
the linear nullcline is replaced by two new linear nullclin
~dashed lines!. Depending on the amplitudeD and the pa-
rametera, each of these linear nullclines may intersect t
cubic nullcline in one, two, or three fixed points. For suf
ciently smallD there are three fixed points on each bran
and the outer two will remain stable asD increases. The
noise process will involve random motion of the phase po
about the stable fixed points; once the phase point lies in
vicinity of a fixed point it will never leave this region. AsD
increases a pair of fixed points on either branch coalesces
D increases further there is only one intersection of
nullclines for each branch. This situation is depicted
dashed lines in Fig. 1, each of which now intersects the cu
nullcline in a single stable fixed point~small filled circles!.



ce

ne

e
a
o

o

fi

a

nd
th

-

m.

ted

d-
-
its
lly

ap
ch

dic
d

d-2

ty
nd

Fig.
ne-
on

d-2
the
or-
the

a-

2584 56SIMON J. FRASER AND RAYMOND KAPRAL
Periodic dichotomous switching then leads to noise-indu
transitions between these two fixed points.

In Eq. ~8!, « is a stiffness parameter. For« very large,
v, the inhibitor, is the fast variable and the linear nullcli
dominates the motion whereas for« very small,v is the slow
variable and the motion is controlled by the cubic nullclin
Since the outer branches of the cubic nullcline are stable
the inner branch is unstable the motion has the character
relaxation oscillation.

A. White-noise limit

There are several possible parameter variations to c
sider in the FHN model in the parameter space«3t3D.
One interesting case is the white-noise limit where we
« and move in the (t,D) parameter plane such thatD2t
remains fixed; then the white-noise limit is recovered
t→0 andD→` for D2t5D.

The two-dimensional Fokker-Planck equation correspo
ing to the FHN model is then obtained by expanding
evolution operators in Eq.~6! to O(t2) and dividing byt.
Formally,

1

t
@r~x,t1t!2r~x,t !#

5
1

t H pF12L1t1
1

2
~L1t!2G

1qF12L2t1
1

2
~L2t!2G21J r~x,t !,

where the operatorsL65¹•f6(x) act on everything to their
right.

Explicitly evaluating theO(t) andO(t2) terms gives

] tr52$]u~u2u32v !1]v«~u2av !1]v«D~q2p!%r

1
1

2
«2D]vvr, ~11!

FIG. 1. Nullclines for the FHN model.a51.5 andb50. The
dashed linear nullclines correspond to6D560.3.
d

.
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where we must takep5q5 1
2 to remove the divergent veloc

ity bias term; all other terms vanish ast→0. Diffusion oc-
curs in thev direction with diffusion constant«2D because
only this variable is subject to noise. Dispersion in theu
direction is then the result of coupling through the drift ter
This motion resembles the Ornstein-Uhlenbeck process@11#.

B. Fast-inhibitor limit

We may consider the fast-inhibitor limit of the FHN
model where«→`; v is entrained byu, i.e., v5v(u), and
Eq. ~8! reduces to

du

dt
52u31~12a21!u1b~ t !/a52

dV~u!

du
1b~ t !/a,

~12!

where the potentialV(u)5u4/42(12a21)u2/2. The one-
variable stochastic differential equation may be integra
over the time intervalt to yield the stochastic map

u6~ t1t!5H Ct
„u~ t !,1D/a…, probability p

Ct
„u~ t !,2D/a…, probability q,

~13!

where the nonlinear functionCt[C6
t may be determined

implicitly from the integration of the cubic velocity field:

Ct
„u~t!,6D/a…:t52A21(

j 51

3

aj

u~t!6uj

u~0!6uj
, ~14!

whereA5( j 51
3 ujuj 11(uj2uj 11) andaj5uj 112uj 12 with

subscript addition mod 3. Hereuj is a root of
2u31u1D/a. This one-dimensional cubic case was stu
ied in some detail in Ref.@12#. One of the important orga
nizing features is the existence of eventually periodic orb
in which transients from the fixed points reach a centra
periodic orbit in a finite number of steps@6,12#. The structure
of the coarse-grained invariant density in the (u,t) plane is
determined by the images of the transients under the m
branches; centrally periodic orbits correspond to bran
crossings and are associated with singular measures.

As an example consider the period-2 eventually perio
orbit shown in Fig. 2. Using the conditions that the fixe
points of the map branches map into the central perio
orbit, we find that this orbit arises att52.857 413 26 for
a53/2 andD51/3. The coarse-grained probability densi
shown in Fig. 3 is peaked near the period-2 fixed points a
the map fixed points with gaps between these regions. In
4 we compare this coarse-grained density for the o
variable model with that for the full stochastic FHN equati
projected onto theu variable for «51, a relatively large
value. Again the density is strongly peaked near the perio
points, but the fine structure is different. In both cases
existence of the underlying, eventually periodic period-2
bit serves to organize the structure of the dynamics and
resulting coarse-grained probability density.

The white-noise limit of the stochastic differential equ
tion ~12! is described by the Fokker-Planck equation

] tr52]u@2u31~12a21!u#r1
1

2
D̃]uur, ~15!
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56 2585DICHOTOMOUSLY SWITCHED PHASE FLOWS
wherer5r(u,t) and the diffusion coefficientD̃ now takes
the form D̃5D/a2. The stationary density is

r* ~u!5Ne22V~u!/D̃. ~16!

It is instructive to consider the white-noise and fa
inhibitor limits in more detail. Above, the one-variab
Fokker-Planck equation~15! was derived from the one
variable stochastic differential equation~12!, after the fast-
inhibitor limit was taken. In contrast, the two-variab
Fokker-Planck equation~11! cannot be directly reduced t
the one-variable form as«→` due to the fact that these tw
limits do not commute. It is possible to carry out a reducti
of the two-variable Perron-Frobenius equation~7! to Eq.~15!
by careful consideration of the fast-inhibitor and white-no
limiting processes. This derivation is carried out in the A
pendix.

FIG. 2. Eventual period-2 orbit ata53/2, D51/3, and
t52.857 413 26.

FIG. 3. Histogram of the density for the central period-2 orbit
a53/2, D51/3, andt52.857 413 26 shown in Fig. 2.
-

-

C. Slow-inhibitor limit

In order to investigate the slow-inhibitor limit«→0 it is
convenient to consider the scaled time variablest85«t and
t85«t. In terms of these variables we may rewrite the FH
equations~8! as

du

dt8
5«21~u2u32v !,

dv
dt8

5u2av2b~ t8!. ~17!

In the slow inhibitor limitu is entrained byv, so we write

dv
dt8

5u~v !2av2b~ t8!, ~18!

whereu(v) is obtained from the solutions ofu2u32v50.
The S-shapedu nullcline has three branches when the syste
has three real roots. Consequently, in the slow-inhibitor lim
the v variable executes stochastic dynamics on the t
branches corresponding to the stable fixed points and ma
discontinuous hops between them. These two branches
given by

u1~v !5
2

A3
cosf, u2~v !5

1

A3
F2cos

f

3
2A3sin

f

3 G ,
~19!

where f5cos21(23A3v/2). Thus, in this slow-inhibitor
limit the stochastic dynamics resembles that of a noisy rel
ational limit cycle when plotted in the (u,v) plane, where
motion on the twou nullclines is distinguished. Figure 5
shows the stable branches of the cubic nullclines given in
~19! along with the unstable branch. The stochastic dynam
of the FHN model for a small value of« («50.01) is also
shown in this figure. As predicted, the stochastic dynam
tracks the stable branches of the cubic nullcline with rap
nearly vertical hops between them.

t

FIG. 4. Histogram of the phase-space density projected onto
u axis for FHN stochastic differential equations at paramet
a53/2, D50.3, andt52.857 413 26, corresponding to the centr
period-2 orbit in Fig. 2.
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IV. ATTRACTOR STRUCTURE

In this section we examine the structure of the attract
for various values of the parameters and also study how th
attractors deform as the white-noise limit is approached.

A. Overview of attractor structure

Figure 6 shows the structure of the attractors in
(«,t) plane forD50.3 andp5q51/2. Each attractor is dis

FIG. 5. Stable@Eq. 19# and unstable branches of the cub
nullcline and the limit-cycle-like trajectory for«50.01, a51.45,
andD51.4.
s
se

e

played in the (u,v) plane and all attractors are drawn on t
same scale with21.5<u<1.5 and20.6<v<0.6. The indi-
vidual figures in this collection of attractors are labeled
their coordinates in the («,t) plane. Note that for these pa
rameters all attractors are centrosymmetric in accord with
symmetry properties of the equations.

We now examine the dynamics that generates the att
tors in Fig. 6. First, we consider the fast-inhibitor regim
where« is large. In this case the trajectories remain close
the linear nullcline. The attractor structure also depends
t and whent is very small compared to any other time sca
the representative point moves in the averaged vector fi
driven by high-frequency noise. As is seen in the lower l
corner of Fig. 6, the high-frequency stochastic process le
to a bimodal structure.

As t increases and becomes comparable to the intrin
time scale of the underlying dynamics, persistence of tra
tories or flow structure becomes apparent in the attractors
Fig. 6 this is first evident as diagonal striations, which su
gest the emergence of singular measures for the attrac
As t increases further lacunae appear in the support of
attractors. Replicas of the foci and nullclines of the under
ing autonomous vector field emerge. Becausev is the fast
variable the attractor becomes ‘‘thin’’ transverse to thev
nullcline and remains linelike along this nullcline directio
Whent is larger than any intrinsic time scale these lineli
structures break up into a dust, as seen in the upper
portion of the figure.

In the slow-inhibitor limit, when« is small the trajectories
remain close to the cubicu nullcline during the slow part of
of

e

FIG. 6. Set of attractors for various values
« ~abscissa! andt ~ordinate!. Each attractor por-
trait is a representation of the attractor in th
(u,v) phase plane.
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56 2587DICHOTOMOUSLY SWITCHED PHASE FLOWS
the motion. Again, for smallt, the system behaves as if
were governed by the the averaged vector field subjec
high-frequency noise. The noise has the effect of induc
transitions between the two stable fixed points~foci! of the
averaged vector field. Since the transients resemble a re
ation oscillation, the resulting stochastic dynamics sho
fast noisy jumps to the stable branches of the cubic nullcl
These then guide the stochastic flow to the vicinities of
stable foci. The repeated jumps and sojourns at the foci h
periodic behavior. The attractors have the appearance
noisy limit cycles with density concentrated near the foci

At large-t values the attractor acquires structure near
foci and transverse to the fast segment of the oscillatory t
sient. Sincet is comparable to the time scale that charact
izes the fast portion of the relaxation oscillation, one s
replication of folded motion near the foci and fast transie
on the relaxation oscillation.

B. Approach to the white-noise limit

We have seen that the attractor structure depends on
t and «. In constructing Fig. 6 the amplitudeD was held
fixed. It is interesting to consider the approach to the wh
noise limit starting with parameter values corresponding
particular attractors in Fig. 6 at small and large values

FIG. 7. Probability densityr(u,v)3(2.5631024) ~on the
1503150 grid! at «51.0 for two values of the scale factor:~a!
s51 and~b! s54.
to
g

x-
s
e.
e
ve
of

e
n-
-
s
s

oth

-
o
f

«. As described earlier, this limit is approached ast→0 and
D→` for D5D2t fixed. To examine this structure we
present results for the normalized coarse-grained invaria
probability densityr(u,v) as a function of the phase-space
variables (u,v).

First, consider«51, where the inhibitor is a fast variable,
corresponding to the leftmost column of Fig. 6. Starting with
the attractor att52, D is scaled bys andt by s22 so that
D is fixed at D50.18 and the white-noise limit is ap-
proached ass→`. In Fig. 7~a!, for («,t)5(1.0,2.0) at
s51, r(u,v) is quasifractal, while in Fig. 7~b! at s54,
r(u,v) is unstructured and bimodal, the density of a white
noise process having two stable fixed points. The change
r from ~a! to ~b! occurs through progressively smoother
shapes ass increases. Although the bimodal configuration
space density shown in Fig. 7~b! has a smooth form in the
white-noise limit, there are correlations in velocity space du
to the dichotomous nature of the noise process. These cor
lations can be seen in Fig. 8, where the probability densi

rv(u̇,v̇) in (u̇,v̇) velocity space is shown. The noise proces

drives v̇ and its dichotomous character shows itself the na
row double sail-like density in this figure. Each sail com
prises two thin vanes. These sails have separatio

O(«D)5O(s) (« fixed! s→`. However,u̇ depends on the
configuration variablesu andv and since these are bounded

u̇ is bounded; correspondingly, the projection of the two

fragments of the density in Fig. 8 on theu̇ density has a
Gaussian shape that tends to a definite limit ass→`. The

smooth behavior ofu, v, andu̇, combined with the divergent

behavior ofv̇, is reminiscent of the Ornstein-Uhlenbeck pro-
cess@11#. However, the dichotomous~as opposed to Gauss-
ian! character of the driving noise process is always evide

in rv . That v̇ but not u̇ is noise driven is also seen in the
sample paths of the stochastic differential equation~10! in
(u,v) space where the fluctuations appear only in thev
direction, indicating that noise is coupled to the velocity
field v̇.

FIG. 8. Probability densityrv(u̇,v̇)3(8.031024) ~on the
1503150 grid! at «51.0 ats54.
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2588 56SIMON J. FRASER AND RAYMOND KAPRAL
An analogous change is seen in Fig. 9 in the slo
inhibitor regime at«50.1, the rightmost column of Fig. 6
where the attractor is a noise-driven limit cycle. Once aga
one observes destruction of the attractor fine structure as
white-noise limit is approached, similar to that seen in
«50.1 column of Fig. 6 ast decreases from top to bottom
Figure 9~a! (s51) shows a quasifractal limit-cycle densit
The high-density regions near the two stable fixed po
eject double jets; this density is structured along the direc
of the stochastic flow, even in the fast relaxation part of
limit cycle. As s increases the jets first replicate under t
dichotomous noise process and then become smoothe
noise-induced diffusion. Ass increases further the structur
in the density disappears steadily until, ats54 shown in
Fig. 9~b!, the density is smooth. For the reasons discus
previously the densityrv behaves like the density in Fig. 8

V. TRANSITION PROCESSES

We now examine the transition processes related to
various kinds of attractor structure discussed above. For
parameter regime of interest here, the noisy attractors h
high-density regions in (u,v) space in the vicinities of the
two stable fixed points of the average vector field. Howev

FIG. 9. Probability densityr(u,v)3(2.5631024) ~on the
1503150 grid! at «50.1 for two values of the scale factor:~a!
s51 and~b! s54.
-

,
he
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e

by
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e
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r,

the attractors are distinguished by the structure of the lo
density regions that connect the high-density peaks. At sm
«, the cubic nullcline controls the deterministic dynamics;
general the transient dynamics comprises fast motion
wards a branch of the cubic nullcline followed by slow m
tion along this nullcline towards the stable fixed point. Und
the influence of noise the system is excited into the pha
space regions corresponding to the transient dynamics so
the persistent motion resembles a noisy relaxation oscilla
or limit cycle. In contrast, at large«, the deterministic dy-
namics is controlled by the linear nullcline. In this case t
noisy dynamics, which takes the system from one fixed-po
region to the other, never excites the system far from t
nullcline, so there is a single low-density band connect
the high-density regions.

It is helpful to give a qualitative description of the tran
sient evolution from configurationald-function initial states
of these attractor types. These densities
d(u2us)d(v2vs), where (us ,vs) is the upper right stable
fixed point of the averaged autonomous vector field.

Limit-cycle attractor structure, from the fractals that a
pear at larget to the smooth configurational densities th
appear ast→0, at fixedD5D2t, are controlled by the cubic
v nullcline. The successive distributions that evolve from t
initial d-function densities for the limit-cycle case show c
culation and spreading. For values oft that are comparable
with the periodtLC associated with the noisy limit cycle, th
density successively doubles under each application of
stochastic map. The circulation and duplication processes
mingled and atomic density appears at widely separated
cations on the limit cycle in the first few map iterations. Th
discrete-time evolution continues until a distribution of ma
resembling the invariant measure of the stochastic fl
emerges. However, ast decreases to values far smaller th
tLC the duplication of density and the associated spreadin
the mass by random diffusive motion occurs more slow
than the advective transport of density round the limit cy
by the averaged autonomous vector field. Now drift and d
fusion are distinguishable as the fast and slow phases o
relaxation oscillation associated with the limit cycle can
clearly seen.

For the bimodal densities and measures arising for la
« on the linearu nullcline very different transient behavio
arises. The circulation is very largely suppressed, altho
vestiges of it appear in the correlation between position
transition flux near the linear nullcline. What is not appare
however, is any massive circulation process of the confi
rational density.

In both kinds of motion described above the behavior
the transients clearly indicates the character of transition
relation and lifetime. A way of quantifying the small-«
~limit-cycle! and large-« ~diagonal! transitions is to follow
the evolution of the species characteristic function defined
left or right (L or R! with respect to the lineu50 in the
space of variableu. The characteristic functions are define
as follows:xL(u) for the species on the left of the origin i

xL~u!5H 1 if u,0

0 if u>0
~20!

andxR(u)512xL(u) for species on the right of the origin
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The x i ( i 5L,R) generated by the map are time series~of
binary variables!, so that for a trajectory of durationT, i.e.,
$u(s):s51,2, . . . ,T%, Ci(st), the normalized correlation
functions with zero asymptotic mean, are estimated by
formula

Ci~st!5
^dx i~st!dx i~0!&T

^~dx i !
2&T

, ~21!

where the time average is defined aŝA&T

5 limT→`(1/T)(s50
T21A(st) and dx i(st)5x i(st)2^x i&T .

To estimate these correlation functions, ensembles of
dom trajectories were generated with Bernoulli trial pro
abilities p andq.

The ensemble decay characteristics for the cubic~limit-
cycle! and linear~diagonal! nullcline cases are now illus
trated. Figure 10 shows a plot of the decay ofCL(st) vs

FIG. 10. Plots ofC(st)5CL(st) vs st for the noisy limit-cycle
case«50.1, corresponding toD50.36. Panel~a! showsCL for
t54.00 as diamonds; the continuous line is the best-fit expone
decay function exp(20.0665t)cos(0.1101t), wheret is the continu-
ous time. Panel~b! showsCL for t50.25 as diamonds; these near
mask the best-fit decaying exponential functi
exp(20.05218t)cos(0.129t). This damped oscillatory decay is du
to the circulation around the limit cycle, which has a period
tLC'50 absolute time units as calculated from the cosine term
t51.00,CL closely resembles that behavior shown in~b!.
e

n-
-

st for parametersa51.5, «50.1, andD50.36 correspond-
ing to a noisy limit cycle. The decay is a strongly damp
oscillation with the period of the limit cycle corresponding
the averaged vector field in the white-noise limit. Except
larget54.0, the graphs are very similar, showing that pr
cesses with a time scale comparable to the limit cycle
periodtLC , such as the coherence-lifetime motion around
limit cycle, are unaffected by usingt!4.0. The value ofD
and the periodtLC itself determine these decay character
tics. Reducing the value oft affects the structure of the
sample path in velocity space, but not the gross feature
the relaxation and decay in configuration space. Figure
shows nearly monotonic, exponential decay correspondin
motion along the linear nullcline at fixed diffusion consta
valueD50.18. The decay of the autocorrelation function
very nearly independent oft once it has become sma
enough, i.e., fort,1.00. Equivalently, the lifetime in eithe
theL or R configurational state, the reciprocal of decay co
stant, ist independent. This ensemble measure of transit
rates is independent oft for values oft larger than those
producing smoothness of the densityr(u,v), which occurs
for t<0.2 for the diagonal transitions but has a larger bou

al

f
t

FIG. 11. Plots ofC(st)5CL(st) vs st for «51.00 where tran-
sitions occur along the linear nullcline. Thet values corresponds to
D50.18.~a! t52.0 and~b! t50.125. Ast decreases the density o
points on thet axis increases, but the exponential decay and de
lifetime are unaffected.
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2590 56SIMON J. FRASER AND RAYMOND KAPRAL
t,1.0 in the noisy limit-cycle regime. From Fig. 11~b! we
see that only for the smallest-t values do all vestiges of th
oscillatory dynamics disappear. In this regime the correlat
function decay satisfies the phenomenological law

CL„~s11!t…5lCL~st! ~22!

and the� transition process follows first-order kinetics wi
l5exp@2(0.1760.01)t#. In the other regimes discusse
above one observes a breakdown of the phenomenolo
law for first-order kinetics.

VI. DISCUSSION

The effect of additive periodic dichotomous noise on t
FitzHugh-Nagumo equations, a nonpotential flow, has b
examined as noise and system parameters are changed
noise periodt, its amplitudeD, and the stiffness paramete
« of the FHN equations have been varied to exhibit the p
nomena described in this study.

The effects of these parameters can roughly be expla
as follows. The behavior of the underlying autonomous p
nar system is controlled by the linear or cubic nullclin
depending on whether« is large or small. The periodt con-
trols the contribution of the deterministic evolution, so th
for t large the map derived from the flow has structured
fractal orbits, whereas fort small the high frequency of the
noise destroys most of this structure. The noise amplit
D controls transition rates in the system. This classificat
depends on the following observations. The parame
D5D2t has the units of a diffusion constant; by keepi
D fixed we find that transition rates in the system depend
D alone~at fixed«), but the invariant coarse-grained dens
~attractor structure! depends ont. Simple decay of the spe
cies autocorrelation function is consistent with structu
densities. Formal white-noise limits of the noise process
be taken, viz.,D→` andt→0 at fixedD. Since noise drives
only the v dynamical variable we find that phase-spa
course-grained densities, dependent on the variablesu, v,
and u̇ or some subset of these, look smooth and eventu
converge in the white-noise limit, althoughv̇ diverges lin-
early withD and the densities dependent onv̇ always display
dichotomous character. These limits are sometimes a del
matter because of the ordering of the velocity relaxation ti
scales and the noise time scalet. In general, a simple
Fokker-Planck equation in theu variable can be derived. Fo
example, the stationary densityr* (u) in the u variable be-
haves like that of a Gaussian white-noise process in a o
dimensional quartic potentialV(u). Other one-dimensiona
limits in theu variable can be achieved when velocity rela
ation inv is fast butt is not small. In the fast-inhibitor limit
the motion is restricted to the neighborhoods of the cu
nullcline and the projected density onu behaves like a one
dimensional stochastic map.

Noise will drive the system from simple deterministic b
havior, e.g., relaxation to a focus, to noisy behavior rese
bling the deterministic behavior at nearby parameter valu
Typically this promotes transitions in the system. At sm
«, noise will excite the system into limit-cycle-like behavio
when there is nearby limit cycle of the underlying syste
When the noise is large enough the sojourn time of the r
n
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resentative points near the stable fixed points is short eno
that the period of the limit cycle shows itself in the oscill
tory decay of the species autocorrelation function. Cohere
and periodicity have to be present to see this feature.
have not investigated the detailed dependence on the soj
times, but when transitions rarely occur we would exp
coherence to be lost. The oscillatory contribution appe
even when the stationary density of the system is structu
because the noise periodt that controls this structure is al
ways shorter than the period of the limit cycle. When t
underlying system is controlled by the linear nullcline
large«, noise promotes transitions along the direction of t
nullcline. Near the white-noise limit there is no obvious ev
dence of correlations between the positive or negative pr
ability current and position. However, as the details in attr
tor structure appear with increasingt, such correlations
should be observed.

ACKNOWLEDGMENTS

This research was supported in part by grants from
Natural Sciences and Engineering Research Council
Canada.

APPENDIX

In this appendix we derive the one-variable Fokke
Planck equation~15! from the two-variable Perron-Frobeniu
equation~7!. In order to carry out the reduction we need
examine the quantities exp(L6

† t)y that appear in the integra
kernel in Eq. ~7!. Let ts be a short time interval that is
assumed to be larger than the time that characterizes the
evolution of thev variable, i.e.,ts«5const.1. We also sup-
pose thatts /t!1.

In the limit ts→0, «→` with «ts5g with g5const.1
we may evaluate this propagator acting ony for the short
time intervalts to obtain

eL6
† tsS u

v D 5S u

v2a21~u2av7D!~e2ga21!
D . ~A1!

This quantity enters in the argument of thed function, so
we may now compute the evolutions of the density for tim
ts under theL6

† operators. Thus

r1~u,v,t1ts!

5pE du8dv8d~u2eL1
† tsu8!d~v2eL1

† tsv8!

3r~u8,v8,t !5pE du8dv8d~u2u8!

3d„v2v81a21~u82av82D!~e2ga21!…

3r~u8,v8,t !5pegar„u,a21~u2D!

1ega@v2a21~u2D!#,t…, ~A2!

which may be written in the form

r1„u,a21~u2D!1j1 ,t1ts…

5pegar„u,a21~u2D!1egaj1 ,t…, ~A3!
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where j15v2a21(u2D). Now suppose we have a un
mass of probability fluid on a compact support surround
the phase-space region of interest. Supposej1Þ0 and let
g→`. This has two effects: the prefactor on the right-ha
side diverges, indicating infinite compression of the dens
~as can be confirmed by integrating the appropriate equa
of continuity with a singular velocity component in thev
direction!. Sincej1Þ0 the v coordinate of the density on
the right-hand side tends to infinity and thus lies outside
support. It follows that the image density must be confined
the curvev5a21(u2D). So after evolution throughts the
density, which was originally defined on an area in pha
space, collapses in a singular way onto a curve.

An exactly parallel argument can be applied to the evo
tion underL2

† , but now we have

r2„u,a21~u1D!1j2 ,t1ts…

5qegar„u,a21~u1D!1j2 ,t…, ~A4!

wherej25v2a21(u1D). Equations~A3! and~A4! can be
summarized as

r6~x,t1ts![r6~x,t1ts!d~j6!

[r6„u,a21~u7D!1j6 ,t1ts…, ~A5!

where, as before,j65v2a21(u7D). The evolution from
t1ts to t1t occurs on the adiabatic curves implied by t
d-function constraints. The forward evolution, comprisi
the initial, shortts step and final, longt2ts step can now be
written for r1 as
fo

,

ko
g

d
y
n

e
o

e

-

r1~x,t1t!5peL1tr~x,t !5peL1~t2ts!eL1tsr~x,t !

5peL1~t2ts!r1~x,t1ts!d~j1!, ~A6!

wherex implies that the densityr1 is supported on an are
that after timets collapses to a support on a one-dimensio
manifold as explained previously. There is an analogo
equation forr2 . Taking the sum of ther6 contributions and
expanding the evolution operator for thet2ts step to second
order, we obtain, after division byt2ts ,

1

t2ts
~r~u,t1t!2r~u,t1ts!!5

1

t2ts
„$12L1~t2ts!

1 1
2 @L1~t2ts!#

2%r1~x,t1ts!1$12L2~t2ts!

1 1
2 @L2~t2ts!#

2%r2~x,t1ts!2r~x,t1ts!…. ~A7!

In this equation the projected, summed densityr5r11r2

on the left-hand side is written as a function ofu only be-
cause the short-time (ts) evolution after each noise transitio
confinesr6 to thed(j6) adiabatic manifolds, i.e.,

r~u,t1t![r1~x,t1t!d~j1!1r2~x,t1t!d~j2!.
~A8!

Substituting for L6 in Eq. ~A7! and using
L6r6(x,ts)[¹•f6r6(x,ts)d(j6) gives, in the limit
t2ts→0, for the formal time orderingt@ts>0, the
Fokker-Planck equation~15! with diffusion coefficient
D̃5D/a2.
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