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The general formalism for periodic dichotomous noise on nonpotential flows is considered. This uncorre-
lated noise process switches suddenly at integer values of peridte effect of additive noise of this kind on
the planar FitzHugh-Nagumo ordinary differential equati¢Rs FitzHugh, Biophys. J1, 445 (1961); J.
Nagumo, S. Arimoto, and Y. Yoshikawa, Proc. IBB, 2061(1962] is examined. For large, quasifractal
attractors are observed, whereas for the white-noise limit, wheremall, a Fokker-Planck equation describes
the evolution. The magnitude efdetermines the smoothness of the transient evolution and equilibrium density
of the system. Typically the stochastic equations give rise to two regions of high density near the stable fixed
points of the underlying autonomous system. The stiffness paramétahe differential equations determines
the fast variable, its associated nulicline, and the resulting flow structure. For sntladl cubic nulicline
controls the motion and transitions between the high-density peaks occur along segments of a noisy limit cycle.
For largee the linear nulicline governs the transitions and the peaks are joined by a single band. The statistical
behavior of the oscillatory and direct transitions is examif&d.063-651X%97)01209-9

PACS numbe(s): 05.40+j, 05.45+hb, 02.50-r, 46.10+z

I. INTRODUCTION plicative control parameters; thus it may serve as a model for
chemical systems with activator-inhibitor kinetics where the
Nonlinear systems driven by colored noise have interestow terms are stochastic variables. By selecting parameters
ing structural and dynamical properties. The stationary disin the stochastic process one may then study transitions be-
tribution, if it exists, may have extrema different from those tween fixed points, a fixed point and limit cycle, or two limit
of the underlying deterministic system and the transitioncycles.
rates between regions of high probability depend in subtle The outline of the paper is as follows. Section Il describes
ways on the correlations in the noise process that is respofihe stochastic dynamics in general, formal terms without re-
sible for the transitions. There exists an extensive literature 0gard to a specific deterministic dynamics. Both stochastic
the calculation of transition rates in overdamped, onedifferential equations and Fokker-Planck equations are pre-
dimensional systems governed by a quartic potential subjegfented for the periodic dichotomous noise process. In Sec. llI
to various types of colored noigé]. the results are specialized to the FitzHugh-Nagumo model
If the dissipative deterministic dynamics is two- and the focus is placed on additive noise in both the slow-
dimensional and cannot be derived from a potential, limit-and fast-inhibitor limits. Passage to the white-noise limit is
cycle oscillations as well as fixed-point attractors may existconsidered and the fast-inhibitor limit is treated in some de-
When such two-dimensional systems are driven by coloreghj| where passage to this limit presents some subtle features.
noise the resulting phase-space flow may be complicated b@ection IV is devoted to the discussion of the noisy attractors
structured 2]. In addition, the new time scale associated withgs 3 function of the noise periadand the FitzHugh-Nagumo
the oscillatory dynamics may be comparable to that of the/ariable e. The change in attractor structure as the white-
noise correlation time and influence the transition rate Pronoise limit is approached is also discussed. Transition rate
cess[3]. processes between stable states are described in Sec. V. We
In this article we consider such effects for a specific butconsider cases where the transition process gives rise to
often studied two-dimensional system: the FitzHugh-monotonic and oscillatory decay to the stationary distribution
Nagumo mode[4]. While this model was originally intro-  and examine the features responsible for this behavior. The

duced in the context of nerve impulse propagation, it hagonclusions of the study are given in Sec. VI.
seen widespread use since it exhibits excitability, bistability,

and oscillations and the structure of the ordinary differential

equations describing its dynamics has features in common EVOLUTION UNDER PERIODIC DICHOTOMOUS

with many systems. The two variables in this model are often NOISE

referred to as the activator and inhibitor and their relative

velocities are determined by a control parameter Before turning to the stochastically driven FitzHugh-
We restrict our considerations to a specific simpleNagumo(FHN) equation, which forms the central part of our

colored-noise process: periodic dichotomous ndiSe]. study, it is useful to present a general formulation of the

This noise process causes the system to switch between twaodel that does not rely on the specific details of the FHN

alternative forms of the evolution equations with probabili- dynamics. Letx=(x;,X,, ... X,) be a vector of dynamical

ties p andg=1—p at regular time intervals [7]. In the  variables and.. two (possibly nonlineagrfunctions ofx. We

studies presented here the two evolution equations are guppose that the time evolution »ft) is given by the sto-

FitzHugh-Nagumo type and differ in their additive or multi- chastic model
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. 1 1 A question that arises in the case of the singular integral
x(O=5[1+ 2O () +5[1-v(OF-(x(1). (1) equation(7) is whether the asymptotic state possesses an
invariant densityp* (x) =lim;_, .p(x,t). The symmetric Ber-
Herev(t) is the continuous-time periodic dichotomous noisenoulli convolution on the unit interval that can be written in
process the form of Eq.(7) is an important example whege® does
not exist when the mass of the system is eventually concen-
trated on a(dense or nowhere densset of measure zero
v(t)= Zo vsf(t—s7)0((s+1)7—t), t=0, (2) [9,10]. However, we avoid the problem of the existence of
. p* by coarse graining. A coarse-grained density defined as
driven by the discretéBernoulli trial) noise process, for ~ theé mean probability of the measure in a lattice partition of

©

seZ", defined by (phase space always exists.
+1, probability p . lll. FITZHUGH-NAGUMO EQUATION:
=1 _1, probability q, (3) STOCHASTIC DYNAMICS

As an example of a two-dimensional flow consider the

whereq=1-p. In Eq.(2), 6 is the Heaviside function. FitzHugh-Nagumo equatiof]

The stochastic differential equatidgth) can be integrated
over the time intervak to give the two-branched stochastic du

5 dv_ o g
map dt_u u’—v, dt—s(u av—p0), (8)

Xo(t+7)= f Hffi(x(t’))dt'+x<t>=eﬁ17x<t)EF;<x<t>), or
t
(4) (1) =f(x(1); @, B), 9)

where L1 (x)=f.(x)-V. In Eq. (4), at instantst=s7, the  \here we have set=(u,v)" andf is defined by the right-

positive branch is chosen with probabiliyand the negative hand sides of Eq(8). This equation possesses cubic and

branch is chosen with probability. In this stroboscopic pic- inear nullclines that may intersect to produce a variety of

ture a stochastic trajectory is a sequence of points functionditferent attractors. We may convert this into a stochastic

ally dependent on an underlying sequence of Bernoulli trialsditferential equation with two kinds of periodic dichotomous
The stochastic differential equatid) is associated with nojse: « fluctuation leads to multiplicative noise agdfluc-

a two-component Fokker-Planck equation for densitiegyation leads to additive noise; we focus here on the additive-

p=(x,t) controlled by velocity fields.. : noise case. We now examine the structure of the autonomous
vector fields corresponding to the components of the random
Lo+ L ()]p+ (XD V7] -9 P variables and their averages.
=2 S(t—s7) Supposex is fixed and the random variabB(t) takes the
[+ L_(X)]p-(xt)] =70 qa —p

two values= A with probabilitiesp and g, respectively, at
p.(X1) integer multiples ofr. The stochastic differential equation
x( ’ ) (5 now takes the form of Eq1) with

p-(Xt) U—wl—o
where£.(x)=V-f.(x) and[t/7] is the largest integer less fo(x(t)= N E (10
thant/7. Each component in this equation can be integrated e(U-avFA)

over the noise period and added to give a discrete evolution

equation for the total densigy(x,t)=p. (x.t) + p_(x.1) [8] Consider the situation shown in Fig. 1. The heavy solid

lines are the two nuliclines foB=0 that intersect in three
p(x,t+7)=(pe t+7+qe £-)p(x,t). (6) fixed points, two of which are stabléarge filled circle$ and
the other(open circlg unstable. 1f3(t) takes the values A
This equation induces a diffeomorphismt into R" when  the linear nulicline is replaced by two new linear nuliclines
written as an integral equation with singular kernel over the(dashed lines Depending on the amplitudé and the pa-
spatial coordinateéPerron-Frobenius equatipn rametera, each of these linear nullclines may intersect the
cubic nullcline in one, two, or three fixed points. For suffi-
ciently smallA there are three fixed points on each branch
and the outer two will remain stable ds increases. The
noise process will involve random motion of the phase point
:J' dy{pd(x—F7 (y)+qdx—F" (y)}p(y,1). about the stable fixed points; once the phase point lies in the
vicinity of a fixed point it will never leave this region. A%
7 increases a pair of fixed points on either branch coalesces. As
A increases further there is only one intersection of the
Here F;(x)zexp(ﬁl 7)X are just the two map branché$) nullclines for each branch. This situation is depicted as
appearing in the integrate@troboscopit form of the sto- dashed lines in Fig. 1, each of which now intersects the cubic
chastic differential equatiofi). nulicline in a single stable fixed poirismall filled circles.

p(xt+7)= f dy{pa(x— e+ 7y) +qa(x—e£- )} p(y,1)
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FIG. 1. Nullclines for the FHN modelkx=1.5 andB=0. The
dashed linear nuliclines correspondto\ = +0.3.

Periodic dichotomous switching then leads to noise-induced

transitions between these two fixed points.
In Eq. (8), ¢ is a stiffness parameter. Farvery large,
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where we must takp=g= 3 to remove the divergent veloc-
ity bias term; all other terms vanish as-0. Diffusion oc-
curs in thev direction with diffusion constané?D because
only this variable is subject to noise. Dispersion in the
direction is then the result of coupling through the drift term.
This motion resembles the Ornstein-Uhlenbeck profesk

B. Fast-inhibitor limit

We may consider the fast-inhibitor limit of the FHN
model wheres—; v is entrained by, i.e.,v=v(u), and
Eq. (8) reduces to

dV(u)
du *

T ul+(1—a Hu+p(t) a=—

B(t) e,
(12)
where the potentiaV(u)=u*4—(1—a Y)u?/2. The one-

variable stochastic differential equation may be integrated
over the time intervak to yield the stochastic map

CT(u(t), +Ala),
C7(u(t),— Al ),

probability p
U(t+7)= probability g, 13

v, the inhibitor, is the fast variable and the linear nullcline where the nonlinear functio€"=C’. may be determined

dominates the motion whereas fowvery small,v is the slow

variable and the motion is controlled by the cubic nullcline.
Since the outer branches of the cubic nulicline are stable and 3 u(r)+u
the inner branch is unstable the motion has the character of a (

relaxation oscillation.

A. White-noise limit

There are several possible parameter variations to co

sider in the FHN model in the parameter space rXA.

nT

implicitly from the integration of the cubic velocity field:

CT(u(r), = Ala):7=—A"1> ajm, (14)
— 7

j=1
WhereAzEf’:lujujH(uj—ujﬂ) anda;=uj,1—Uj;, With
subscript addition mod 3. Hereu; is a root of
u®+u+A/a. This one-dimensional cubic case was stud-
led in some detail in Refl12]. One of the important orga-

One interesting case is the white-noise limit where we ﬁXnizing features is the existence of eventually periodic orbits

e and move in the £,A) parameter plane such thafr

remains fixed; then the white-noise limit is recovered a

7—0 andA—ox for A27=D.

The two-dimensional Fokker-Planck equation correspon
ing to the FHN model is then obtained by expanding th
evolution operators in Eq6) to O(7?) and dividing by .
Formally,

1
;[p(X,t‘f’ T)_P(Xut)]

1
i

1
1-Lom+5(Lon)?

1
+qll-L 7+ E(L,T)Z

—1]P(X,t),

where the operator§.. =V -f_(x) act on everything to their
right.
Explicitly evaluating theO(7) andO(7?) terms gives

dp=—1{d,(u—UP—v)+d,e(U—av)+d,eA(q—p)lp

1,
+ -¢e“Dd,,p,

5 (11)

e

in which transients from the fixed points reach a centrally

Jeriodic orbit in a finite number of steps,12]. The structure

of the coarse-grained invariant density in the«) plane is

dgetermined by the images of the transients under the map

branches; centrally periodic orbits correspond to branch
crossings and are associated with singular measures.

As an example consider the period-2 eventually periodic
orbit shown in Fig. 2. Using the conditions that the fixed
points of the map branches map into the central period-2
orbit, we find that this orbit arises at=2.857 413 26 for
a=3/2 andA=1/3. The coarse-grained probability density
shown in Fig. 3 is peaked near the period-2 fixed points and
the map fixed points with gaps between these regions. In Fig.
4 we compare this coarse-grained density for the one-
variable model with that for the full stochastic FHN equation
projected onto theu variable fore=1, a relatively large
value. Again the density is strongly peaked near the period-2
points, but the fine structure is different. In both cases the
existence of the underlying, eventually periodic period-2 or-
bit serves to organize the structure of the dynamics and the
resulting coarse-grained probability density.

The white-noise limit of the stochastic differential equa-
tion (12) is described by the Fokker-Planck equation

1
5D duup,

dp=—a[—u+(1-a Hulp+ 3

(15
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FIG. 2. Eventual period-2 orbit akw=3/2, A=1/3, and

FIG. 4. Histogram of the phase-space density projected onto the
7=2.857 413 26.

u axis for FHN stochastic differential equations at parameters
a=3/2,A=0.3, andr=2.857 413 26, corresponding to the central

wherep=p(u,t) and the diffusion coefficienb now takes period-2 orbit in Fig. 2.

< ) i o
the formD=D/a*. The stationary density is C. Slow-inhibitor limit

In order to investigate the slow-inhibitor limi—0 it is
p* (U) = Ne—2VW/b (16) convenient to consider the scaled time varialileset and
7' =¢7. In terms of these variables we may rewrite the FHN
equationg8) as

It is instructive to consider the white-noise and fast- du do
inhibitor limits in more detail. Above, the one-variable W=s_1(u—u3—v), W=u—av—,8(t’). (17)
Fokker-Planck equatior{15) was derived from the one-
variable stochastic differential equatioh2), after the fast- o o ] )
inhibitor limit was taken. In contrast, the two-variable !N the slow inhibitor limitu is entrained by, so we write
Fokker-Planck equatiofll) cannot be directly reduced to
the one-variable form as—« due to the fact that these two dv ,
limits do not commute. It is possible to carry out a reduction gr ~u)mav =AY,
of the two-variable Perron-Frobenius equati@nto Eq.(15)
by careful consideration of the fast-inhibitor and white-noiseyhereu(y) is obtained from the solutions af—u3—v=0.

limiting processes. This derivation is carried out in the Ap-1,¢ S-shaped nullcline has three branches when the system

(18)

pendix. has three real roots. Consequently, in the slow-inhibitor limit
the v variable executes stochastic dynamics on the two
' T T - - ' - branches corresponding to the stable fixed points and makes
g0 L i discontinuous hops between them. These two branches are
given by
60 | . 2 1 ¢ mn?
_ | uy(v) NG cosp, Uy(v) NG cos 3 \/§sm3 ,
P (19
L _ where ¢=cos {(—3y3v/2). Thus, in this slow-inhibitor
limit the stochastic dynamics resembles that of a noisy relax-
20 r ] ational limit cycle when plotted in theu(v) plane, where
L ) motion on the twou nullclines is distinguished. Figure 5
o | l . ‘ l | shows the stable branches of the cubic nullclines given in Eq.

(19) along with the unstable branch. The stochastic dynamics
of the FHN model for a small value af (¢=0.01) is also
shown in this figure. As predicted, the stochastic dynamics

FIG. 3. Histogram of the density for the central period-2 orbit attracks the stable branches of the cubic nulicline with rapid,
a=23/2, A=1/3, andr=2.857 413 26 shown in Fig. 2. nearly vertical hops between them.

-0.8 -0.4 0 04 0.8
u
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1.5 . . ~ played in the (,v) plane and all attractors are drawn on the
same scale with- 1.5<u<1.5 and—0.6<v <0.6. The indi-

A vidual figures in this collection of attractors are labeled by
their coordinates in theg(7) plane. Note that for these pa-
rameters all attractors are centrosymmetric in accord with the
symmetry properties of the equations.

We now examine the dynamics that generates the attrac-
tors in Fig. 6. First, we consider the fast-inhibitor regime
wheree is large. In this case the trajectories remain close to
] the linear nullcline. The attractor structure also depends on
7 and whenyr is very small compared to any other time scale
§ the representative point moves in the averaged vector field
driven by high-frequency noise. As is seen in the lower left

15 . . , corner of Fig. 6, the high-frequency stochastic process leads
“ 05 0 0.5 1 to a bimodal structure.

v As 7 increases and becomes comparable to the intrinsic

time scale of the underlying dynamics, persistence of trajec-

FIG. 5. Stable[Eq. 19 and unstable branches of the cubic tories or flow structure becomes apparent in the attractors. In
nulicline and the limit-cycle-like trajectory fos=0.01, «=1.45, Fig. 6 this is first evident as diagonal striations, which sug-
andA=14. gest the emergence of singular measures for the attractors.

As 7 increases further lacunae appear in the support of the
IV. ATTRACTOR STRUCTURE attractors. Replicas of the foci and nuliclines of the underly-

In this section we examine the structure of the attractors',ng.aumnomOus vector field emgrg_e.”Becauses the fast

for various values of the parameters and also study how thes\/@rlable the attractor becomes “thin” transverse to the

attractors deform as the white-noise limit is approached. nulicline and remains linelike along this nulicline direction.
When 7 is larger than any intrinsic time scale these linelike

structures break up into a dust, as seen in the upper left
portion of the figure.

Figure 6 shows the structure of the attractors in the In the slow-inhibitor limit, where is small the trajectories
(e,7) plane forA=0.3 andp=qg=1/2. Each attractor is dis- remain close to the cubig nullcline during the slow part of

A. Overview of attractor structure

4.0

2.0

Lo FIG. 6. Set of attractors for various values of

: ¢ (abscisspand 7 (ordinatg. Each attractor por-

trait is a representation of the attractor in the
(u,v) phase plane.

0.5

0.25

1.0 0.4 0.2 0.1
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FIG. 8. Probability densityp,(u,v)X(8.0<107%) (on the

00004y 150x 150 grid ats=1.0 ato=4.

0.0003

e. As described earlier, this limit is approachedras0 and
A—ow for D=A?r fixed. To examine this structure we
present results for the normalized coarse-grained invariant
probability densityp(u,v) as a function of the phase-space
variables (,v).

First, considee =1, where the inhibitor is a fast variable,
corresponding to the leftmost column of Fig. 6. Starting with
the attractor at=2, A is scaled byr and 7 by o2 so that
D is fixed at D=0.18 and the white-noise limit is ap-
proached assr—«. In Fig. 7a), for (¢,7)=(1.0,2.0) at
o=1, p(u,v) is quasifractal, while in Fig. (b) at c=4,

FIG. 7. Probability densityp(u.0)x (256104 (on the P(U:v) IS unstructured and bimodal, the density of a white-
150X 150 grid at £ —1.0 for two values of the scale factofa) noise process having two stable fixed p0|nt§. The change in
o=1 and(b) o=4. p from (a) to (b) occurs through progressively smoother

shapes a# increases. Although the bimodal configuration-
the motion. Again, for small, the system behaves as if it space density shown in Fig(ly has a smooth form in the
were governed by the the averaged vector field subject twhite-noise limit, there are correlations in velocity space due
high-frequency noise. The noise has the effect of inducingo the dichotomous nature of the noise process. These corre-
transitions between the two stable fixed poiftsci) of the  lations can be seen in Fig. 8, where the probability density
averaged vector field. Since the transients resemble a relay- (y,0) in (u,v) velocity space is shown. The noise process

ation o_su!latlon, the resulting stochastic dynam_|cs Shqwﬁrivesb and its dichotomous character shows itself the nar-
fast noisy jumps to the stable branches of the cubic nullcline,

These then guide the stochastic flow to the vicinities of the W double sa|l-l|ke density in this flggre. Each sail com-
stable foci. The repeated jumps and sojourns at the foci haR'1S€s two thin vanes. These sall_s have separation
periodic behavior. The attractors have the appearance &(g4)=0(0) (& fixed) oc— . However,u depends on the
noisy limit cycles with density concentrated near the foci. configuration variables andv and since these are bounded,
At large-r values the attractor acquires structure near thes is bounded; correspondingly, the projection of the two
foci and transverse to the fast segment of the oscillatory tranfagments of the density in Fig. 8 on thedensity has a

sient. Sincer is comparable to the time scale that characters 4 ssian shape that tends to a definite limias. The
izes the fast portion of the relaxation oscillation, one sees '

replication of folded motion near the foci and fast transientsSM00th behavior ofi, v, andu, combined with the divergent

0.0002

0.0001 -

(b)

on the relaxation oscillation. behavior ofv, is reminiscent of the Ornstein-Uhlenbeck pro-
cess[11]. However, the dichotomouss opposed to Gauss-
B. Approach to the white-noise limit ian) character of the driving noise process is always evident

We have seen that the attractor structure depends on botfh Pv+ Thatv but notu is noise driven is also seen in the
7 ande. In constructing Fig. 6 the amplitudé was held ~Sample paths of the stochastic differential equalidd in

fixed. It is interesting to consider the approach to the white{U;v) space where the fluctuations appear only in the
noise limit starting with parameter values corresponding tglirection, indicating that noise is coupled to the velocity
particular attractors in Fig. 6 at small and large values offield v.
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the attractors are distinguished by the structure of the low-
density regions that connect the high-density peaks. At small
g, the cubic nullcline controls the deterministic dynamics; in
general the transient dynamics comprises fast motion to-
wards a branch of the cubic nullicline followed by slow mo-
tion along this nullcline towards the stable fixed point. Under
the influence of noise the system is excited into the phase-
space regions corresponding to the transient dynamics so that
the persistent motion resembles a noisy relaxation oscillation
or limit cycle. In contrast, at large, the deterministic dy-
namics is controlled by the linear nullcline. In this case the
noisy dynamics, which takes the system from one fixed-point
region to the other, never excites the system far from this
nullcline, so there is a single low-density band connecting
the high-density regions.
It is helpful to give a qualitative description of the tran-
sient evolution from configurational-function initial states
of these attractor types. These densities are
o(u—ug) (v —vg), where (g,v) is the upper right stable
fixed point of the averaged autonomous vector field.
Limit-cycle attractor structure, from the fractals that ap-
pear at larger to the smooth configurational densities that
appear as—0, at fixedD = A27, are controlled by the cubic
v nulicline. The successive distributions that evolve from the
initial §-function densities for the limit-cycle case show cir-
culation and spreading. For values othat are comparable
with the periodt, - associated with the noisy limit cycle, the
density successively doubles under each application of the
stochastic map. The circulation and duplication processes are
mingled and atomic density appears at widely separated lo-
) cations on the limit cycle in the first few map iterations. This
(b) u R discrete-time evolution continues until a distribution of mass
resembling the invariant measure of the stochastic flow
FIG. 9. Probability densityp(u,v)x(2.56x10°%) (on the €merges. However, asdecreases to values far smaller than
150x 150 grid at e=0.1 for two values of the scale factofa)  tic the duplication of density and the associated spreading of
o=1 and(b) o=4. the mass by random diffusive motion occurs more slowly
than the advective transport of density round the limit cycle
by the averaged autonomous vector field. Now drift and dif-
inhibitor regime ate =0.1, the rightmost column of Fig. 6 fusion are diSt.ingl.JiShable as the f"j.‘St and .SIO.W phases of the
where the attractor is a noise-driven limit cycle. Once again,relaxatlon oscillation associated with the limit cycle can be
one observes destruction of the attractor fine structure as tH:éearIy seen. . .
white-noise limit is approached, similar to that seen in the For the_ bimodal de_nsmes anq measures arising for _Iarge
£=0.1 column of Fig. 6 as decreases from top to bottom. © on the linearu nulicline very different transient behavior
Figure 9a) (o=1) shows a quasifractal limit-cycle density. arises. The circulation is very largely suppressed, although

The high-density regions near the two stable fixed pointi/eSIig?S of it appear in'the correla}tion betwgen position and
eject double jets; this density is structured along the directio ransition f_qu near the."”e?r mlj"glme' What is r;c;’:]appar?nt,
of the stochastic flow, even in the fast relaxation part of thehot\_/vevelzrc,j IS ‘?‘t”y massive circulation process ot the configu-
limit cycle. As o increases the jets first replicate under thefational density. . . .
dichotomous noise process and then become smoothed In bOth Kinds of motion described above the behg_vlor of
noise-induced diffusion. As increases further the structure ('€ fransients clearly indicates the character of transition cor-
in the density disappears steadily until, @a=4 shown in relation and lifetime. A way of quantifying the smail-

Fig. 9b), the density is smooth. For the reasons discusse imit—cylcle) an;j rl}argee (diag(r)]na) transitiofns is to SOI]!OW d
) ; ) Y — e evolution of the species characteristic function defined as
previously the density, behaves like the density in Fig. 8. left or right (L or R) with respect to the linai=0 in the

space of variablel. The characteristic functions are defined
as follows: y, (u) for the species on the left of the origin is
We now examine the transition processes related to the
various kinds of attractor structure discussed above. For the
parameter regime of interest here, the noisy attractors have
high-density regions inu,v) space in the vicinities of the
two stable fixed points of the average vector field. Howeverand yg(u) =1— x, (u) for species on the right of the origin.

An analogous change is seen in Fig. 9 in the slow

V. TRANSITION PROCESSES

1 if u<O

0 if u=0 (20

xL(u)=
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FIG. 10. Plots ofC(s7) =C,(s7) vs s for the noisy limit-cycle
casee=0.1, corresponding t® =0.36. Panel(a showsC, for
7=4.00 as diamonds; the continuous line is the best-fit exponenti
decay function exp{0.066%)cos(0.1101), wheret is the continu-
ous time. Panglb) showsC, for 7=0.25 as diamonds; these nearly
mask the best-fit decaying exponential function

exp(—0.05218)cos(0.129). This damped oscillatory decay is due s7 for parametersy=1.5, ¢ =0.1, andD =0.36 correspond-

to the circulation around the limit cycle, which has a period Of{'ng to a noisy limit cycle. The decay is a strongly damped

t . c~50 absolute time units as calculated from the cosine term. AT 2 .~ ° - . o .
7=1.00,C, closely resembles that behavior shown(ti oscillation with the perlod pf the Ilm!t cyclg co_rre_spondmg to
the averaged vector field in the white-noise limit. Except for
The y; (i=L,R) generated by the map are time seriof large r=4_.0, the_ graphs are very similar, showi_ng_ that pro-
binary variables so that for a trajectory of duratioh, i.e., CESSEs with a time scale compargbl_e to the. limit cycle of
{u(s):s=1,2, ... T}, Ci(s), the normalized correlation per_lodtLC, such as the coherenc_e-llfetlme motion around the
functions with zero asymptotic mean, are estimated by thgmlt cycle, are ungffected by u_smg<4.0. The value oD .
formula a_md the per_lodLC itself determine these decay characteris-
tics. Reducing the value of affects the structure of the
sample path in velocity space, but not the gross features of
(Sxi(s7)6xi(0))7 (21)  the relaxation and decay in configuration space. Figure 11
((ox1))T ' shows nearly monotonic, exponential decay corresponding to
motion along the linear nulicline at fixed diffusion constant
where the time average is defined agA)r valueD=0.18. The decay of the autocorrelation function is
=limr_..(UT)SIZiA(s7) and &xi(sn)=xi(s7)—{(xi)r. very nearly independent of once it has become small
To estimate these correlation functions, ensembles of rarenough, i.e., forr<<1.00. Equivalently, the lifetime in either
dom trajectories were generated with Bernoulli trial prob-theL or R configurational state, the reciprocal of decay con-
abilities p andg. stant, isT independent. This ensemble measure of transition
The ensemble decay characteristics for the culgit- rates is independent of for values of r larger than those
cycle) and linear(diagonal nulicline cases are now illus- producing smoothness of the densitfu,v), which occurs
trated. Figure 10 shows a plot of the decay@f(s7) vs  for r<0.2 for the diagonal transitions but has a larger bound

FIG. 11. Plots ofC(s7)=C_(s7) vs st for e=1.00 where tran-
itions occur along the linear nulicline. Thevalues corresponds to
=0.18.(a) 7=2.0 and(b) 7=0.125. As7 decreases the density of
points on thet axis increases, but the exponential decay and decay
lifetime are unaffected.
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7<1.0 in the noisy limit-cycle regime. From Fig.  we  resentative points near the stable fixed points is short enough
see that only for the smallestvalues do all vestiges of the that the period of the limit cycle shows itself in the oscilla-
oscillatory dynamics disappear. In this regime the correlatioriory decay of the species autocorrelation function. Coherence

function decay satisfies the phenomenological law and periodicity have to be present to see this feature. We
have not investigated the detailed dependence on the sojourn
CL((s+1)7)=NCy(s7) (220 times, but when transitions rarely occur we would expect

. ! L .. coherence to be lost. The oscillatory contribution appears
and the transition process follows first-order kinetics with o\ e when the stationary density of the system is structured
A=exg—(0.17=0.01)7]. In the other regimes discussed pocquse the noise periadthat controls this structure is al-
above one observes a breakdown of the phenomenologicglyys shorter than the period of the limit cycle. When the
law for first-order kinetics. underlying system is controlled by the linear nullcline at

largee, noise promotes transitions along the direction of this
V1. DISCUSSION nullcline. Near the white-noise limit there is no obvious evi-
The effect of additive periodic dichotomous noise on thedence of correlations between the positive or negative prob-

FitzHugh-Nagumo equations, a nonpotential flow, has beeﬁb”'tﬁrﬁugﬁm znd porSI\t/:/ci)tE' Ii-:lovrveveir, as thehdetz?rlslwlia;[]trac-
examined as noise and system parameters are changed. 'Itfi]é structure appea creasing such correlations

noise periodr, its amplitudeA, and the stiffness parameter should be observed.
¢ of the FHN equations have been varied to exhibit the phe-
nomena described in this study. ACKNOWLEDGMENTS

The effects of these parameters can roughly be explained This research was supported in part by grants from the

nar system is controlled by the linear or cubic nuliclinescgnada.

depending on whether is large or small. The period con-

trols the contribution of the deterministic evolution, so that APPENDIX
for 7 large the map derived from the flow has structured or
fractal orbits, whereas for small the high frequency of the In this appendix we derive the one-variable Fokker-

noise destroys most of this structure. The noise amplitud®lanck equatiofl5) from the two-variable Perron-Frobenius

A controls transition rates in the system. This classificatiorequation(7). In order to carry out the reduction we need to
depends on the following observations. The parameteexamine the quantities ex@l 7)y that appear in the integral
D=A?r has the units of a diffusion constant; by keepingkernel in Eq.(7). Let 75 be a short time interval that is

D fixed we find that transition rates in the system depend omssumed to be larger than the time that characterizes the fast
D alone(at fixede), but the invariant coarse-grained density evolution of they variable, i.e.;7.e =const>1. We also sup-
(attractor structuredepends orr. Simple decay of the spe- pose thatrg/7<1.

cies autocorrelation function is consistent with structured In the limit 7.—0, e — o with £ 7=y with y=const>1
densities. Formal white-noise limits of the noise process cawe may evaluate this propagator acting yror the short

be taken, viz.A—« and7—0 at fixedD. Since noise drives time interval 7, to obtain

only the v dynamical variable we find that phase-space,
course-grained densities, dependent on the variablas, chor

andu or some subset of these, look smooth and eventually

converge in the white-noise limit, although diverges lin- . . . .
9 gh 9 This quantity enters in the argument of thdunction, so

early withA and the densities de_pgndentwalwgys d|sp|ay_ we may now compute the evolutions of the density for time
dichotomous character. These limits are sometimes a dellcatTe under thez! operators. Thus
matter because of the ordering of the velocity relaxation time ® = ’
scales and the noise time scate In general, a simple p+ (U, t+ 7o)
Fokker-Planck equation in thevariable can be derived. For
example, the stationary densipf (u) in the u variable be-
haves like that of a Gaussian white-noise process in a one-

dimensional quartic potentid¥(u). Other one-dimensional

u) ( u
v] \v—a Yu—avFA)(e 7*-1)/)"

(A1)

=pf du'do’ S(u—eftmsu’) s(v—elrmsp’)

Iimits 'in theu variable_ can be achieved when. ve_lqcity .rel.ax- X p(u' v’ t)= pf du’dv’ s(u—u’)
ation inv is fast butr is not small. In the fast-inhibitor limit
the motion is restricted to the neighborhoods of the cubic o VT —ya_
nulicline and the projected density enbehaves like a one- XS v’ +a U —av'~A) (e 1))
dimensional stochastic map. Xp(u',v',t)=pe’p(u,a Y(u—A)

Noise will drive the system from simple deterministic be- 1
havior, e.g., relaxation to a focus, to noisy behavior resem- te’fv—a (u=4A)]), (A2)

bling the deterministic behavior at nearby parameter values. hich b itten in the f
Typically this promotes transitions in the system. At smal|Which may be written in the form

e, noise will excite the system into I|m|t-cycle-I|k_e behavior p (U {U—A)+E&, t+7)

when there is nearby limit cycle of the underlying system.

When the noise is large enough the sojourn time of the rep- =pe”p(u,a Y u—A)+er¢, t), (A3)
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where ¢, =v—a (u—A). Now suppose we have a unit pi(Xt+7)=pef+Tp(x,t)=pel+(T el Tsp(x,t)
mass of probability fluid on a compact support surrounding -
the phase-space region of interest. Suppbse0 and let =pe+ (T p (X475 8(£4), (AB)

y—oo, This has two effects: the prefactor on the right-hand
side diverges, indicating infinite compression of the densityvherex implies that the density ., is supported on an area
(as can be confirmed by integrating the appropriate equatiofhat after timers collapses to a support on a one-dimensional
of continuity with a singular velocity component in the — Mmanifold as explained previously. There is an analogous
direction. Since&, #0 thev coordinate of the density on €quation forp_ . Taking the sum of thg. contributions and
the right-hand side tends to infinity and thus lies outside th&xpanding the evolution operator for the 75 step to second
support. It follows that the image density must be confined teorder, we obtain, after division by— s,
the curvev=a~"1(u—A). So after evolution throughy the
density, which was originally defined on an area in phase _
space, collapses in a singular way onto a curve. T— Ts(p(u’t+ M= p(Utt )= T— Tg
An exactly parallel argument can be applied to the evolu- ) )
+3[ L (7)) p (Xt T) H{1-L (17— 175)

tion underc’ , but now we have
+ %[E,( T Ts)]z}Pf(X,'H' Ts) — p(X,t+ Ts))- (A7)

{1-Li(r=19)

p_(U,a Y u+A)+ & t+7)

=qe”p(u,a” H(u+A)+£&_ 1), (Ad) In this equation the projected, summed dengityp, +p_
on the left-hand side is written as a function wfonly be-
whereé_=v—a~'(u+A). EquationgA3) and(A4) can be  cause the short-timer() evolution after each noise transition
summarized as confinesp.. to the §(¢.) adiabatic manifolds, i.e.,

p=(XtH 79 =pu (X U4 75) (£ p(Ut+7)=p (Xt 7) 8(E4) + p_ (X, t+7) (£
=p.(Ua HUTA)+£ t+7), (A5) (A8)

where, as beforef. =v—a~}(uFA). The evolution from Substituting for L. in Eq. (A7) and using
t+ 75 to t+ 7 occurs on the adiabatic curves implied by the £=p=(X,7)=V-f.p.(X,75)6(£.) gives, in the limit
s-function constraints. The forward evolution, comprising 7~ 7s—0, for the formal time orderingr>7,=0, the
the initial, shortr, step and final, long— 7 step can now be ~Fokker-Planck - equation(15) with diffusion coefficient

written for p, as D=D/a?.
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